Kaestner Brackets

Forest Kobayashi

Introduction

Definition 1. Let *X* be a topological space. A *knot* in *X* is an embedding $K: S^1 \hookrightarrow X$.

Usually, we assume $X = \mathbb{R}^3$ (*classical knots*), but we may also consider knots in thickened orientable

Figure 2: Knot on torus that comes undone in \mathbb{R}^3 **Definition 2** (Ambient Isotopy). Let K_0, K_1 be knots in X. Then we say K_0 \cong $\cong K_1$ if there is a continuous map $F: X \times [0,1] \to X$ such that $F(K_0, 0) = K_0$, $F(K_0, 1) = K_1$, and each $F(\cdot, t)$ is a homeomorphism.

lutions: RHS even

tive, RHS positive

oefficients don't match

Skein-based invariants: These recursively convert diagrams to polynomials by a "bracket map"

-
-
-
-
-
-

- surfaces (*virtual knots*). In any case, we want to talk about what it means for two knots to be "the same." This turns out to depend on the choice of *X*.
- All knots in \mathbb{R}^3 come unknotted in \mathbb{R}^4 .
- \bullet Some knots on a torus come unknotted in $\mathbb{R}^3.$
- Definition of knot equivalence should reflect this.

• If we restrict ourselves to certain well-behaved knots, we can work entirely through diagrams. **Theorem 1** (Reidemeister, 1927)**.** *Two (tame) knots K*0*, K*¹ *are equivalent iff their diagrams are related by a finite sequence of the following moves:*

- Very elegant characterization of knot equivalence on a theoretical level.
- However: in practice, Reidemeister-based algorithms are very inefficient (not even NP).

Idea: Coarse heuristics sometimes let us eschew full computations. Let's apply this to knots. **Definition 3** (Knot Invariant)**.** Let **Knot** be the category of knots, and let **C** be another category. Then a *knot invariant* is a map $F :$ **Knot** \rightarrow **C** such that

- Intuitively: a systematic way of assigning "nice" values to knots such that equivalent knots get mapped to the same thing.
- "Clever solutions" above can be thought of as analogous invariants for strings of arithmetic expressions in \mathbb{Z}, \mathbb{R} , and $\mathbb{Q}[x]$, respectively.
- Today: two important classes of knot invariants, *coloring invariants* and *skein-based invariants*.

Knot Invariants

like the following (the process terminates with unknots being assigned a fixed value δ and then multiplying by a normalization constant to account for *writhe*).

Example (Jones Polynomial): The celebrated *Jones Polynomial* can be constructed this way using the *Kauffman Bracket*, which corresponds to the choices $B = A^{-1}$, and $\delta = -(A^2 + A^{-2})$.

- Many of our best invariants are skein-based. How can we make them even stronger?
- One approach: the skein rules treat all crossings in a knot as if they are "the same." To distinguish them, we can first color the knot with a biquandle and then make the coefficients *A, B* dependent on the coloring at each crossing. This yields *biquandle brackets*, which were first introduced in [\[3\]](#page-0-0).

$$
K_0 \cong K_1 \implies F(K_0) \cong F(K_1).
$$

Recall that a *classical knot* is a knot in \mathbb{R}^3 and a *virtual knot* is a knot in a thickned orientable surface (note, all classical knots are virtual knots). An interesting property of virtual knots is that unlike classical knots, some of them can have crossings with non-zero *parity*:

Definition 4 (Parity)**.** Let *K* be a knot represented by some diagram *D*. For each crossing *c* in *D*, count the number of crossings encountered in traveling from the *overstrand* at *c* to the *understrand* at *c*; denote this quantity by n_c . Then we define the *parity* of *c* to be n_c mod 2.

We will incorporate parity in two places to enhance biquandle brackets. First, we will replace *biquandles* with *parity biquandles* (first introduced in [\[1\]](#page-0-1)), then we will replace the biquandle bracket coefficient maps with parity-dependent versions.

Definition 5 (Parity Biquandle)**.** A *parity biquandle* is a set *X* together with four binary operations \trianglerighteq^0 , \trianglerighteq^0 , \trianglerighteq^1 , $\triangleright¹$ such that

- (i) $(X, \underline{\triangleright}^0, \overline{\triangleright}^0)$ is a biquandle (note, $(X, \underline{\triangleright}^1, \overline{\triangleright}^1)$ need not be)
- (ii) For all $x, y \in X$, the maps x α_u^1 $\stackrel{\alpha_y}{\longmapsto} x \triangleright^1 y, x$ β_u^1 $\stackrel{\beta_y^2}{\longmapsto} x \trianglerighteq^1 y$, and $(x, y) \stackrel{S}{\longmapsto} (y \trianglerighteq^1 x, x \trianglerighteq^1 y)$ are all invertible, and
- (iii) For all $(a, b, c) \in \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ and for all $x, y, z \in X$, we have the *mixed exchange laws*
	-
	- $(z \triangleright^a y) \triangleright^b (x \triangleright^c y) = (z \triangleright^b x) \triangleright^a (y \triangleright^c x)$ $(x \triangleright^a y) \triangleright^b (z \triangleright^c y) = (x \triangleright^b z) \triangleright^a (y \triangleright^c z)$ $(y \trianglerighteq a \cdot x) \trianglerighteq b(z \triangleright c \cdot x) = (y \trianglerighteq b \cdot z) \trianglerighteq a(x \triangleright c \cdot z)$
	-

Coloring invariants: Loosely speaking, these encode knots in group-like algebraic structures. x , $y \, \overline{\triangleright}\, x$ y . $x \trianglerighteq y$ *Example (Biquandles):* Let *X* be a set and *K* be a knot represented by some diagram *D*. Label ("color") each arc in *D* by an element of *X*. Then, define two binary operations \geq , \triangleright (read "under" and "over," respectively) that describe how our labels change when strands cross (see diagram at right).

By translating the Reidemeister moves into algebraic axioms for \geq , \triangleright , we can turn "coloring by X" into a knot invariant! In this case we call $(X, \geq, \triangleright)$ a *biquandle*.

Definition 6. Let $\mathcal{X} = (X, \Sigma^0, \Sigma^1, \Sigma^1)$ be a parity biquandle, and let R be a commutative ring with identity. Let $A_0, B_0, A_1, B_1 : X \times X \to R^\times$. Then the collection $(\mathcal{X}, A_0, B_0, A_1, B_1)$ is a *Kaestner bracket* iff it satisfies the following conditions:

- (i) $((X, \Sigma^0, \overline{\triangleright}^0), A_0, B_0)$ is a biquandle bracket,
- (ii) $A_1, B_1: X \times X \to R^{\times}$ are invertible,
- (iii) There exists some $\delta \in R$ such that for all $x, y \in X$,
	-
- $-A_1(x, y) \cdot B_1^{-1}$ $a_1^{-1}(x, y) - A_1^{-1}$ $J_1^{-1}(x,y) \cdot B_1(x,y) = \delta$ (iv) For all $x, y, z \in X$ and for all $(a, b, c) \in \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$, we have the following (note,

for the sake of notational compactness we write terms like $A_0(x, y)$ as $A_{0,x}$ *y* instead):

- *Aa,x y* $\cdot A_{b,x} \mathop{\succeq} \nolimits^a y$ $z\bar{p}^{\ c}y$ *Aa,x y* $\cdot B_{b,x} \mathbf{e}^{\mathbf{a}_y}$ $z\bar{\triangleright}^c\!\dot{y}$ *Ba,x y* $\cdot B_{b,x} \underline{\triangleright}^a y$ $z\bar{p}^{\ c}y$ *Aa,x y* $\cdot B_{b,x} \underline{\triangleright}^a y$ $z\bar{\triangleright}^c y$
- $A_{c,y\overline{\triangleright}^{a}x}$ $z \bar{\triangleright}^b x$ $\cdot B_{b,x}$ *z* $\cdot A_{a,x\trianglerighteq ^{b}z}$

Some notes:

 $\cdot A_{c,y}$ *z* $= A_{c,y\overline{\triangleright}^{a}x}$ $z \bar{\triangleright}^b x$ $\cdot A_{b,x}$ *z* $\cdot A_{a,x\trianglerighteq ^{b}z}$ $y \leq c$ *z* · *Bc,y z* $= B_{c,y\overline{\triangleright}^{a}x}$ $z\bar{\triangleright}^b x$ $\cdot B_{b,x}$ *z* $\cdot A_{a,x\trianglerighteq ^{b}z}$ $y \in c \overline{z}$ $\cdot A_{c,y}$ *z* $= A_{c,y\, \overline{\triangleright}^{\,a} x}$ $z\bar{\triangleright}^b x$ $\cdot B_{b,x}$ *z* $\cdot B_{a,x\trianglerighteq ^{b}z}$ $y \leq c$ *z* $\cdot A_{c,y}$ *z* $= A_{c,y\overline{\triangleright}^{a}x}$ $z \bar{\triangleright}^b x$ $\cdot A_{b,x}$ *z* \cdot $B_{a,x}$ _{\triangleright} bz $y \leq c$ $B_{c,y\overline{\triangleright}^{a}x}$ $z \bar{\triangleright}^b x$ $\cdot A_{b,x}$ *z* $\cdot A_{a,x\trianglerighteq ^{b}z}$ $y \leq c$ $+\,\delta B_{c,y\,\overline{\triangleright}\,{}^ax}$ $z\bar{\triangleright}^b x$ $\cdot A_{b,x}$ *z* \cdot $B_{a,x}$ _{\triangleright} bz $y \in c$ ² $+ B_{c,y\overline{\triangleright}^{a}x}$ $z\bar{\triangleright}^b x$ \cdot $B_{b,x}$ *z* \cdot $B_{a,x}$ _{\triangleright} bz $y \in c$ ² $y \leq c$ $= A_{a,x}$ *y* $\cdot A_{b,x} \mathop{\succeq} \nolimits^a y$ $z\bar{p}^c\check{y}$ $\cdot B_{c,y}$ *z* $+ B_{a,x}$ *y* $\cdot A_{b,x} \underline{\triangleright}^a y$ $z\bar{\triangleright}^c y$ $\cdot A_{c,y}$ *z* $+\ \delta B_{a,x}$ *y* $\cdot A_{b,x} \underline{\triangleright}^a y$ $z\bar{e}^{c}y$ \cdot $B_{c,y}$ *z* $+ B_{a,x}$ *y* \cdot $B_{b,x}$ _{\triangleright} a_y $z\bar{\triangleright}^c y$ \cdot $B_{c,y}$ *z*

These axioms guarantee that polynomials computed using the coloring-dependent skein relations below will be invariants of oriented links. For further details on the construction, see [[2\]](#page-0-2).

Kaestner Brackets

We can think of Kaestner brackets as a general cookbook for constructing knot polynomials with coloring-dependent skein relations. However, one should note that if we employ a *constant coloring* (i.e., all arcs are labeled identically), then we can also recover well-known invariants such as the *Jones*, *Alexander*, and *HOMFLYPT* polynomials as special cases of Kaestner brackets.

Building off this work, we introduce a generalization of *biquandle brackets* called *Kaestner brackets*. These incorporate *parity information* to yield invariants that are generally stronger than *biquandle brackets* when applied to virtual knots.

> • In pursuing computational results we made significant improvements on biquandle enumeration algorithms. In one case, we lowered runtime for a calculation from *>* 50 days to just 46 seconds. • We also reformulated the axioms for *Trace Diagrams* (a digraph-based encoding scheme for knots) to yield representations that are more elegant theoretically and computationally.

- the traces in our Trace Diagrams?
- invariants of classical knots?
- brackets in infinite rings (e.g., $\mathbb{R}[x]$)?

Now, we define *Kaestner Brackets:*

$$
\sum_{y}^{x} y^{\overline{\triangleright}^{a} x}
$$

Results

-
-
-

• We have demonstrated examples of Kaestner brackets that outperform their classical biquandle bracket counterparts, thus the addition of parity information is meaningful!

Questions for Further Research

• Is there a way to relax the condition that *δ* be constant? In particular, can we make *δ* depend on

• As we've seen, including parity information improves the performance of our invariants in distinguishing virtual knots. Can we apply similar ideas by using remainder mod 4 to strengthen

• For computational purposes, we restricted all of our searches to finite parity biquandles with bracket maps over finite fields. How can we extend these techniques to search for Kaestner

Acknowledgments

I want to express my appreciation to the Department of Mathematics at Harvey Mudd College, who provided funding for my research through the Giovanni Borrelli Mathematics Fellowship. I would also like to acknowledge my advisor Sam Nelson for the invaluable guidance and expertise he offered throughout our project.

References

[1] A. Kaestner and L. H. Kauffman. Parity biquandle. *Banach Center Publications*, 100:131–151, 2014. [2] F. Kobayashi and S. Nelson. Kaestner Brackets. *arXiv*, Sep 2019. 1909.09920.

Advisor: Sam Nelson